Activity

Activity ID

12477

Expires

September 17, 2024

Format Type

Journal-based

CME Credit

1

Fee

30

CME Provider: JAMA Network Open

Description of CME Course

Importance  In the absence of a national strategy in response to the COVID-19 pandemic, many public health decisions fell to local elected officials and agencies. Outcomes of such policies depend on a complex combination of local epidemic conditions and demographic features as well as the intensity and timing of such policies and are therefore unclear.

Objective  To use a decision analytical model of the COVID-19 epidemic to investigate potential outcomes if actual policies enacted in March 2020 (during the first wave of the epidemic) in the St Louis region of Missouri had been delayed.

Design, Setting, and Participants  A previously developed, publicly available, open-source modeling platform (Local Epidemic Modeling for Management & Action, version 2.1) designed to enable localized COVID-19 epidemic projections was used. The compartmental epidemic model is programmed in R and Stan, uses bayesian inference, and accepts user-supplied demographic, epidemiologic, and policy inputs. Hospital census data for 1.3 million people from St Louis City and County from March 14, 2020, through July 15, 2020, were used to calibrate the model.

Exposures  Hypothetical delays in actual social distancing policies (which began on March 13, 2020) by 1, 2, or 4 weeks. Sensitivity analyses were conducted that explored plausible spontaneous behavior change in the absence of social distancing policies.

Main Outcomes and Measures  Hospitalizations and deaths.

Results  A model of 1.3 million residents of the greater St Louis, Missouri, area found an initial reproductive number (indicating transmissibility of an infectious agent) of 3.9 (95% credible interval [CrI], 3.1-4.5) in the St Louis region before March 15, 2020, which fell to 0.93 (95% CrI, 0.88-0.98) after social distancing policies were implemented between March 15 and March 21, 2020. By June 15, a 1-week delay in policies would have increased cumulative hospitalizations from an observed actual number of 2246 hospitalizations to 8005 hospitalizations (75% CrI: 3973-15 236 hospitalizations) and increased deaths from an observed actual number of 482 deaths to a projected 1304 deaths (75% CrI, 656-2428 deaths). By June 15, a 2-week delay would have yielded 3292 deaths (75% CrI, 2104-4905 deaths)—an additional 2810 deaths or a 583% increase beyond what was actually observed. Sensitivity analyses incorporating a range of spontaneous behavior changes did not avert severe epidemic projections.

Conclusions and Relevance  The results of this decision analytical model study suggest that, in the St Louis region, timely social distancing policies were associated with improved population health outcomes, and small delays may likely have led to a COVID-19 epidemic similar to the most heavily affected areas in the US. These findings indicate that an open-source modeling platform designed to accept user-supplied local and regional data may provide projections tailored to, and more relevant for, local settings.

Disclaimers

1. This activity is accredited by the American Medical Association.
2. This activity is free to AMA members.

Register for this Activity

ABMS Member Board Approvals by Type
More Information
Commercial Support?
No

NOTE: If a Member Board has not deemed this activity for MOC approval as an accredited CME activity, this activity may count toward an ABMS Member Board’s general CME requirement. Please refer directly to your Member Board’s MOC Part II Lifelong Learning and Self-Assessment Program Requirements.

Educational Objectives

To identify the key insights or developments described in this article

Keywords

Public Health, Population Health, Coronavirus (COVID-19)

Competencies

Medical Knowledge

CME Credit Type

AMA PRA Category 1 Credit

DOI

10.1001/jamanetworkopen.2021.47042

View All Activities by this CME Provider

The information provided on this page is subject to change. Please refer to the CME Provider’s website to confirm the most current information.