Activity ID
13601Expires
August 8, 2027Format Type
Journal-basedCME Credit
1Fee
$30CME Provider: JAMA Oncology
Description of CME Course
Importance Acute myeloid leukemia (AML) is a clonal hematopoietic cancer that disrupts normal hematopoiesis, ultimately leading to bone marrow failure and death. The annual incidence rate of AML is 4.1 per 100 000 people in the US and is higher in patients older than 65 years. Acute myeloid leukemia includes numerous subgroups with heterogeneous molecular profiles, treatment response, and prognosis. This review discusses the evidence supporting frontline therapies in AML, the major principles that guide therapy, and progress with molecularly targeted therapy.
Observations Acute myeloid leukemia is a genetically complex, dynamic disease. The most commonly altered genes include FLT3, NPM1, DNMT3A, IDH1, IDH2, TET2, RUNX1, NRAS, and TP53. The incidence of these alterations varies by patient age, history of antecedent hematologic cancer, and previous exposure to chemotherapy and/or radiotherapy for any cancer. Since 2010, molecular data have been incorporated into AML prognostication, gradually leading to incorporation of targeted therapies into the initial treatment approach of induction chemotherapy and subsequent management. The first molecularly targeted inhibitor, midostaurin, was approved to treat patients with AML with FLT3 variants in 2017. Since then, the understanding of the molecular pathogenesis of AML has expanded, allowing the identification of additional potential targets for drug therapy, treatment incorporation of molecularly targeted therapies (midostaurin, gilteritinib, and quizartinib targeting FLT3 variants; ivosidenib and olutasidenib targeting IDH1 variants, and enasidenib targeting IDH2), and identification of rational combination regimens. The approval of hypomethylating agents combined with venetoclax has revolutionized the therapy of AML in older adults, extending survival over monotherapy. Additionally, patients are now referred for hematopoietic cell transplant on a more rational basis.
Conclusions and Relevance In the era of genomic medicine, AML treatment is customized to the patient’s comorbidities and AML genomic profile.
Disclaimers
1. This activity is accredited by the American Medical Association.
2. This activity is free to AMA members.
ABMS Member Board Approvals by Type
ABMS Lifelong Learning CME Activity
Allergy and Immunology
Anesthesiology
Colon and Rectal Surgery
Family Medicine
Medical Genetics and Genomics
Nuclear Medicine
Ophthalmology
Pathology
Physical Medicine and Rehabilitation
Plastic Surgery
Preventive Medicine
Psychiatry and Neurology
Radiology
Thoracic Surgery
Urology
Commercial Support?
NoNOTE: If a Member Board has not deemed this activity for MOC approval as an accredited CME activity, this activity may count toward an ABMS Member Board’s general CME requirement. Please refer directly to your Member Board’s MOC Part II Lifelong Learning and Self-Assessment Program Requirements.
Educational Objectives
To identify the key insights or developments described in this article
Keywords
Hematology, Leukemias, Surgery, Surgical Oncology, Oncology
Competencies
Medical Knowledge
CME Credit Type
AMA PRA Category 1 Credit
DOI
10.1001/jamaoncol.2024.2662