Activity ID
13215Expires
March 5, 2027Format Type
Journal-basedCME Credit
1Fee
30CME Provider: JAMA
Description of CME Course
Importance Systemic amyloidosis from transthyretin (ATTR) protein is the most common type of amyloidosis that causes cardiomyopathy.
Observations Transthyretin (TTR) protein transports thyroxine (thyroid hormone) and retinol (vitamin A) and is synthesized predominantly by the liver. When the TTR protein misfolds, it can form amyloid fibrils that deposit in the heart causing heart failure, heart conduction block, or arrhythmia such as atrial fibrillation. The biological processes by which amyloid fibrils form are incompletely understood but are associated with aging and, in some patients, affected by inherited variants in the TTR genetic sequence. ATTR amyloidosis results from misfolded TTR protein deposition. ATTR can occur in association with normal TTR genetic sequence (wild-type ATTR) or with abnormal TTR genetic sequence (variant ATTR). Wild-type ATTR primarily manifests as cardiomyopathy while ATTR due to a genetic variant manifests as cardiomyopathy and/or polyneuropathy. Approximately 50 000 to 150 000 people in the US have heart failure due to ATTR amyloidosis. Without treatment, heart failure due to ATTR amyloidosis is associated with a median survival of approximately 5 years. More than 130 different inherited genetic variants in TTR exist. The most common genetic variant is Val122Ile (pV142I), an allele with an origin in West African countries, that is present in 3.4% of African American individuals in the US or approximately 1.5 million persons. The diagnosis can be made using serum free light chain assay and immunofixation electrophoresis to exclude light chain amyloidosis combined with cardiac nuclear scintigraphy to detect radiotracer uptake in a pattern consistent with amyloidosis. Loop diuretics, such as furosemide, torsemide, and bumetanide, are the primary treatment for fluid overload and symptomatic relief of patients with ATTR heart failure. An ATTR-directed therapy that inhibited misfolding of the TTR protein (tafamidis, a protein stabilizer), compared with placebo, reduced mortality from 42.9% to 29.5%, reduced hospitalizations from 0.7/year to 0.48/year, and was most effective when administered early in disease course.
Conclusions and Relevance ATTR amyloidosis causes cardiomyopathy in up to approximately 150 000 people in the US and tafamidis is the only currently approved therapy. Tafamidis slowed progression of ATTR amyloidosis and improved survival and prevented hospitalization, compared with placebo, in people with ATTR-associated cardiomyopathy.
Disclaimers
1. This activity is accredited by the American Medical Association.
2. This activity is free to AMA members.
ABMS Member Board Approvals by Type
ABMS Lifelong Learning CME Activity
Allergy and Immunology
Anesthesiology
Colon and Rectal Surgery
Family Medicine
Medical Genetics and Genomics
Nuclear Medicine
Ophthalmology
Orthopaedic Surgery
Pathology
Physical Medicine and Rehabilitation
Plastic Surgery
Preventive Medicine
Psychiatry and Neurology
Radiology
Thoracic Surgery
Urology
Commercial Support?
NoNOTE: If a Member Board has not deemed this activity for MOC approval as an accredited CME activity, this activity may count toward an ABMS Member Board’s general CME requirement. Please refer directly to your Member Board’s MOC Part II Lifelong Learning and Self-Assessment Program Requirements.
Educational Objectives
To identify the key insights or developments described in this article
Keywords
Cardiology
Competencies
Medical Knowledge
CME Credit Type
AMA PRA Category 1 Credit
DOI
10.1001/jama.2024.0442