Activity ID
12795Expires
September 19, 2025Format Type
Journal-basedCME Credit
1Fee
30CME Provider: JAMA Network Open
Description of CME Course
Importance With timely collection of SARS-CoV-2 viral genome sequences, it is important to apply efficient data analytics to detect emerging variants at the earliest time.
Objective To evaluate the application of a statistical learning strategy (SLS) to improve early detection of novel SARS-CoV-2 variants using viral sequence data from global surveillance.
Design, Setting, and Participants This case series applied an SLS to viral genomic sequence data collected from 63 686 individuals in Africa and 531 827 individuals in the United States with SARS-CoV-2. Data were collected from January 1, 2020, to December 28, 2021.
Main Outcomes and Measures The outcome was an indicator of Omicron variant derived from viral sequences. Centering on a temporally collected outcome, the SLS used the generalized additive model to estimate locally averaged Omicron caseload percentages (OCPs) over time to characterize Omicron expansion and to estimate when OCP exceeded 10%, 25%, 50%, and 75% of the caseload. Additionally, an unsupervised learning technique was applied to visualize Omicron expansions, and temporal and spatial distributions of Omicron cases were investigated.
Results In total, there were 2698 cases of Omicron in Africa and 12 141 in the United States. The SLS found that Omicron was detectable in South Africa as early as December 31, 2020. With 10% OCP as a threshold, it may have been possible to declare Omicron a variant of concern as early as November 4, 2021, in South Africa. In the United States, the application of SLS suggested that the first case was detectable on November 21, 2021.
Conclusions and Relevance The application of SLS demonstrates how the Omicron variant may have emerged and expanded in Africa and the United States. Earlier detection could help the global effort in disease prevention and control. To optimize early detection, efficient data analytics, such as SLS, could assist in the rapid identification of new variants as soon as they emerge, with or without lineages designated, using viral sequence data from global surveillance.
Disclaimers
1. This activity is accredited by the American Medical Association.
2. This activity is free to AMA members.
ABMS Member Board Approvals by Type
ABMS Lifelong Learning CME Activity
Allergy and Immunology
Anesthesiology
Colon and Rectal Surgery
Family Medicine
Medical Genetics and Genomics
Nuclear Medicine
Ophthalmology
Orthopaedic Surgery
Pathology
Physical Medicine and Rehabilitation
Plastic Surgery
Preventive Medicine
Psychiatry and Neurology
Radiology
Thoracic Surgery
Urology
Commercial Support?
NoNOTE: If a Member Board has not deemed this activity for MOC approval as an accredited CME activity, this activity may count toward an ABMS Member Board’s general CME requirement. Please refer directly to your Member Board’s MOC Part II Lifelong Learning and Self-Assessment Program Requirements.
Educational Objectives
To identify the key insights or developments described in this article
Keywords
Infectious Diseases, Genetics and Genomics, Global Health, Coronavirus (COVID-19)
Competencies
Medical Knowledge
CME Credit Type
AMA PRA Category 1 Credit
DOI
10.1001/jamanetworkopen.2022.33014